
Computer Physics Communications 217 (2017) 149–161

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

LB3D: A parallel implementation of the Lattice-Boltzmann method for
simulation of interacting amphiphilic fluids✩

S. Schmieschek a, L. Shamardin b,a, S. Frijters c, T. Krüger d,a, U.D. Schiller e,a, J. Harting f,c,
P.V. Coveney a,*
a Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London, WC1H 0AJ, United Kingdom
b Google UK Ltd, 6 Pancras Square, London N1C 4AG, United Kingdom
c Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
d School of Engineering, University of Edinburgh, The King’s Buildings, Mayfield Road, EH9 3JL Edinburgh, Scotland, United Kingdom
e Department of Materials Science and Engineering, Clemson University, 161 Sirrine Hall, Clemson, SC 29634, USA
f Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen–Nürnberg for Renewable Energy, Fürther Str. 248,
90429 Nürnberg, Germany

a r t i c l e i n f o

Article history:
Received 10 June 2016
Received in revised form 25 October 2016
Accepted 29 March 2017
Available online 18 April 2017

Keywords:
Lattice-Boltzmann method
High performance computing
Multiphase flow
LBM
LB3D

a b s t r a c t

We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and sup-
porting tools which have enabled research utilising high performance computing resources for nearly
two decades, LB3D version 7 provides a subset of the research code functionality as an open source
project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of
the implementation. The software package is validated against simulations of meso-phases resulting
from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such
as water–oil–surfactant systems. The impact of the surfactant species on the dynamics of spinodal
decomposition are tested and quantitative measurement of the permeability of a body centred cubic
(BCC)model porousmedium for a simple binarymixture is described. Single-core performance and scaling
behaviour of the code are reported for simulations on current supercomputer architectures.
Program summary
Program Title: LB3D
Program Files doi: http://dx.doi.org/10.17632/9g9x2wr8z8.1
Licensing provisions: BSD 3-clause
Programming language: FORTRAN90, Python, C
Nature of problem: Solution of the hydrodynamics of single phase, binary immiscible and ternary am-
phiphilic fluids. Simulation of fluid mixtures comprising miscible and immiscible fluid components as
well as amphiphilic species on the mesoscopic scale. Observable phenomena include self-organisation of
mesoscopic complex fluid phases and fluid transport in porous media.
Solution method: Lattice-Boltzmann (lattice-Bhatnagar–Gross–Krook, LBGK) [1, 2, 3] method describing
fluid dynamics in terms of the single particle velocity distribution function in a 3-dimensional discrete
phase space (D3Q19) [4, 5, 6]. Multiphase interactions are modelled using a phenomenological pseudo-
potential approach [7, 8] with amphiphilic interactions utilising an additional dipole field [9, 10]. Solid
boundaries aremodelled using simple bounce-back boundary conditions and additional pseudo-potential
wetting interactions [11].
Additional comments including Restrictions and Unusual features: The purpose of the release is the provision
of a refactored minimal version of LB3D suitable as a starting point for the integration of additional
features building on the parallel computation and IO functionality.

[1] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford University Press,
2001.

[2] B. Dünweg, A. Ladd, Lattice Boltzmann simulations of softmatter systems, Adv. Poly. Sci. 221 (2009)
89–166

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).

* Corresponding author.
E-mail address: p.v.coveney@ucl.ac.uk (P.V. Coveney).

http://dx.doi.org/10.1016/j.cpc.2017.03.013
0010-4655/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cpc.2017.03.013
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.03.013&domain=pdf
http://dx.doi.org/10.17632/9g9x2wr8z8.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:p.v.coveney@ucl.ac.uk
http://dx.doi.org/10.1016/j.cpc.2017.03.013
http://creativecommons.org/licenses/by/4.0/

150 S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161

[3] C. K. Aidun, J. R. Clausen, Lattice-Boltzmann Method for Complex Flows, Annual Review of Fluid
Mechanics 42 (2010) 439.

[4] X. He, L.-S. Luo, A priori derivation of the lattice-Boltzmann equation, Phys. Rev. E 55 (1997) R6333.
[5] X. He, L.-S. Luo, Theory of the lattice Boltzmannmethod: from theBoltzmann equation to the lattice

Boltzmann equation, Phys. Rev. E 56.
[6] Y. H. Qian, D. D’Humiéres, P. Lallemand, Lattice BGK Models for Navier–Stokes Equation, Euro-

physics Letters 17 (1992) 479.
[7] X. Shan, H. Chen, Lattice-Boltzmann model for simulating flows with multiple phases and compo-

nents, Physical Review E 47 (1993) 1815.
[8] X. Shan, G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction,

Journal of Statistical Physics 81 (1995) 379.
[9] H. Chen, B. Boghosian, P.V. Coveney, M. Nekovee, A ternary lattice-Boltzmann model for am-

phiphilic fluids, Proceedings of the Royal Society of London A 456 (2000) 2043.
[10] M. Nekovee, P. V. Coveney, H. Chen, B. M. Boghosian, Lattice-Boltzmann model for interacting

amphiphilic fluids, Phys. Rev. E 62 (2000) 8282.
[11] N. S. Martys, H. Chen, Simulation of multicomponent fluids in complex three-dimensional geome-

tries by the lattice-Boltzmann method, Phys. Rev. E 53 (1996) 743.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Since its advent almost 30 years ago, the lattice-Boltzmann
method (LBM) has gained increasing popularity as a means for the
simulation of fluid dynamics. Driving factors for this development
are the relative simplicity and locality of the lattice-Boltzmann al-
gorithm. The latter allows for straightforward parallelisation of the
method and its application in high performance computing. Today,
a wide range of LBM implementations is available ranging from
specialised academic packages such as Ludwig for the simulation
of complex fluids [1] and HemeLB for the simulation of flow in
blood vessels [2] to very versatile open-source projects such as
OpenLB [3] and Palabos [4] aswell as commercial applications such
as PowerFlow [5] and XFlow [6].

The lattice-Boltzmann (LB) code LB3D provides a number of
algorithms and scripts designed for the simulation of binary and
ternary amphiphilic complex fluid mixtures in bulk and complex
geometries using high performance computing environments. As
in the case of Ludwig, LB3D focuses on the simulation of complex
fluids. While Ludwig implements a top-down model where a free
energy has to be provided by the user, LB3D is a bottom-up code
in which interactions are specified between particle distributions.
LB3D is the only package which handles amphiphilic fluids in
such a manner. Originally implemented in 1999, LB3D has since
been in constant use and development. This document starts out
with an overview of the history of the development and scientific
applications of the code. Following this, the paper considers LB3D
in version 7.1, the latest release of a re-factored open-source in-
stance of the programwhich has been development since 2013 and
available in this version under the BSD 3-Clause license.

Following work on lattice-gas models [7,8], the development
of LB3D started out in the group of Coveney then at Queen Mary
University of London, as a summer project of then third year Uni-
versity of Oxford undergraduate student Chin who implemented
the amphiphilic fluid model with assistance of Boghosian and
Nekovee [9,10]. During the first decade of development and ap-
plication, the amphiphilic fluid model was employed for extensive
research on the properties of complex fluids. Publications on com-
putational science developments in this period report aspects of
distributed computing as an integral part of the design, including
real time visualisation and computational steering [11–15]. Scien-
tific contributions included the study of the spinodal decompo-
sition and emulsion formation of binary fluid mixtures [16–19]
as well as the self-organisation of mesoscopic phases in general
and the cubic gyroid phase in particular [20–22]. Flow of complex
fluids in porous media and under shear was investigated [23].

The utilisation of substantial resources like the US TeraGrid and
UK HPC facilities in ground breaking federation of national grid
infrastructures [12–14] and the highest performance class of na-
tional supercomputers for capability computing [24,25], allowed
scientists working with LB3D large-scale numerical investigation
of rheological properties of the gyroid phase [26–29]. Later work
explored the parameters of ternary amphiphilic fluids and their
flow properties in detail [30–34].

Subsequent research with version 6 of LB3D, which remains
unreleased, has focused on fluid surface interaction and coupling of
particle models. Version 7.1 of LB3D, however, which is released in
conjunction with this paper, includes the amphiphilic fluid model
and has been restructured and optimised to ease future develop-
ment. First steps have been taken to support hybrid parallel pro-
gramming models in order to ensure compatibility with projected
next generation supercomputer architectures on the path to the
exascale.

A newly integrated Python interface for the configuration of
initial conditions and interactive execution improves ease of use.
Moreover, improved in-code documentation and extension of the
user manual are intended to encourage new users and developers
to harness the potential of LB3D as well to as enhance it further.

The paper has the following structure. In Section 2 we describe
the lattice-Boltzmann method (LBM) used. We do not provide the
derivation of this model, but show the key points necessary for
understanding the implementation; references are provided to the
relevant original papers. In Section 3 we discuss implementation
details such asmemory organisation, communication and scripting
capabilities. In Section 4wediscuss tests used to verify and validate
the implementation.We also provide performance benchmarks for
the code and compare performance and scaling with other LBM
codes. The section closes with a conclusion and outlook on future
development directions.

2. Method

In this section we give an overview of the single phase lattice-
Boltzmannmethod as well as its multiphase extension and bound-
ary conditions as implemented in LB3D.

2.1. Single phase lattice-Boltzmann

The lattice-Boltzmann equation is a popular method to simu-
late flows and hydrodynamic interactions in incompressible fluids
[35–37]. It is amesoscopic approachwhere the fluid is represented
by populations that evolve according to a fully discrete analogue
of the Boltzmann kinetic equation [38,39]. We write the lattice-
Boltzmann equation in the following form

http://creativecommons.org/licenses/by/4.0/

S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161 151

Fig. 1. The geometry of D3Q19 lattice vectors ci .

f ∗

σ ,i(x, t) = fσ ,i(x, t) −
h
τσ

[
fσ ,i(x, t) − f eqi

(
nσ (x, t),u(x, t)

+
τσ

mσnσ
Fσ (x, t)

)]
(1)

where the pre-collisional populations fσ ,i and post-collisional pop-
ulations f ∗

σ ,i are related through the streaming step

fσ ,i(x, t) = f ∗

σ ,i(x − hci, t − h). (2)

Eq. (1) describes a collision step and neglects terms of order
O(h2/τ) compared to the more common second-order accurate
LBE [38–41]; however, this does not affect the density and flow
field which are of primary interest. The populations fσ ,i(x, t) and
f ∗

σ ,i(x, t) represent number densities of a fluid species σ at discrete
grid points x and discrete time t , moving with discrete velocities
ci. LB3D uses the so-called D3Q19 lattice, a three-dimensional
Cartesian lattice with 19 velocities [42] obtained from a projected
face centred hyper-cubic (FCHC) lattice. The lattice velocities ci
can be derived systematically as the abscissae of a Gauss–Hermite
quadrature in velocity space [40,43,44]. The D3Q19 lattice is il-
lustrated in Fig. 1 along with the (arbitrary) numbering of the
velocities ci implemented in LB3D.

Eq. (1) describes the lattice-Bhatnagar–Gross–Krook (LBGK)
collision model where the populations relax towards local equi-
librium on a single time scale τσ [42,45]. The equilibrium distribu-
tion f eqi (n,u) is a Hermite expansion of the Maxwell–Boltzmann
distribution [38,46]. Here we choose an expansion including cubic
terms in the velocity

f eqi (n,u) = win
(
1 +

ciαuα
c2s

+
Qiαβuαuβ

2c4s
+

Wiαβγ uαuβuγ
6c6s

)
, (3)

where cs denotes the speed of sound, wi are lattice weights, and
Qiαβ andWiαβγ are the second and third rank isotropic tensors

Qiαβ = ciαciβ − c2s δαβ (4)

Wiαβγ = ciαciβciγ − c2s ciαδβγ − c2s ciβδγα − c2s ciγ δαβ . (5)

Note that the Einstein convention for summation over Greek in-
dices is implied. For the D3Q19 lattice, the speed of sound is cs =

1/
√
3 and the lattice weights wi are [42]

wi = 1/3, |ci| = 0,
wi = 1/18, |ci| = 1,
wi = 1/36, |ci| =

√
2.

(6)

Hydrodynamic fields are obtained from the populations by cal-
culating velocity moments, e.g., density and momentum density
are given by

ρσ (x, t) = mσ

∑
i

f ∗

σ ,i(x, t), (7)

p̃σ (x, t) = mσ

∑
i

f ∗

σ ,i(x, t)ci, (8)

wheremσ is the molecular mass. In the presence of a force density
Fσ (x, t), the lattice momentum density p̃σ (x, t) has to be corrected
for a discretisation effect, such that the hydrodynamic momentum
density of the fluid is [36,40,41,47]

pσ (x, t) = p̃σ (x, t) −
h
2
Fσ (x, t). (9)

Here the sign stems from the fact that we calculate the moments
from the post-collisional distributions. Finally, the hydrodynamic
flow field is

u(x, t) =
pσ (x, t)
ρσ (x, t)

(10)

which is used in the lattice-Boltzmann equation (1).
Generally the force density Fσ (x, t) may accommodate any

kind of contribution. In particular, Fσ (x, t) may include both inter-
molecular forces (Shan–Chen forces in our model, cf. Section 2.2)
and external forces such as gravity or an artificial Kolmogorov
scaled force [48].

2.2. Shan–Chen multiphase model

The Shan–Chen approach [49] provides a straightforward way
to model multi-component (e.g.water and oil) and/or multi-phase
fluids (e.g. water and water vapour). The single phase model is
extended by the so-called pseudo-potential method to include
multiphase interactions [50,51]. Each fluid component σ is gov-
erned by the lattice-Boltzmann equation (1).

The total fluid density is simply

ρ(x, t) =

∑
σ

ρσ (x, t). (11)

It is assumed that there is a common velocity ũ for all components.
In the absence of forces, it can be shown that total momentum is
conserved if the common velocity is chosen to be [49]

ũ(x, t) =

∑
σ p̃σ (x, t)/τσ∑
σ ρσ (x, t)/τσ

. (12)

Note that the common velocity ũ(x, t) implies an effectivemomen-
tum exchange between the species even when no explicit forces
are prescribed.

In addition, each fluid component may be subject to an explicit
force density Fσ (x, t). Similar to the single phase case, we need to
redefine the hydrodynamic momentum to account for discretisa-
tion effects. The hydrodynamic flow field for the multiphase fluid
is then given by [49]

u(x, t) =
1

ρ(x, t)

∑
σ

(
p̃σ (x, t) −

h
2
Fσ (x, t)

)
. (13)

152 S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161

If the fluid as a whole is subject to a force density F(x, t), it has to
be distributed to each fluid component proportionally to the mass
fraction [52]:

Fσ (x, t) =
ρσ (x, t)
ρ(x, t)

F(x, t). (14)

Eq. (14) ensures that the total force density obeys F(x, t) =∑
σFσ (x, t) and that the acceleration for each component is iden-

tical: aσ (x, t) = a(x, t) = F(x, t)/ρ(x, t).
The basic idea of the Shan–Chen approach for multiphase fluids

is to introduce coupling forces

Fintσ (x, t) = −ψσ (x, t)
∑
x′

∑
σ ′

Gσσ ′ (x, x′)ψσ ′ (x′, t)
(
x′

− x
)

(15)

which are non-local and depend on density gradients. Here,
ψσ (x, t) represents an effective mass of component σ which is
realised as a function of component density ρσ (x, t) [49]

ψσ (x, t) = ψ(ρσ (x, t)) = ρ0 [1 − exp (−ρσ (x, t)/ρ0)] , (16)

where ρ0 is a reference density. The Green’s function Gσσ ′ (x, x′)
must be symmetric in σ and x to ensure global momentum con-
servation

Gσσ ′ (x, x′) = Gσ ′σ (x, x′) = Gσσ ′ (x′, x). (17)

We choose Gσσ ′ (x, x′) to be short-ranged and allow interaction
only between neighbouring lattice sites [52]

Gσσ ′ (x, x′) =

⎧⎨⎩
2gσσ ′ if |x′

− x| = 1,
gσσ ′ if |x′

− x| =
√
2,

0 otherwise.
(18)

We can now rewrite Eq. (15) as

Fintσ (x, t) = −ψ(ρσ (x, t))
∑

i

∑
σ ′

Gσσ ′,iψ(ρσ ′ (x + ci, t))ci (19)

and Eq. (18) as

Gσσ ′,i =

⎧⎨⎩
0 |ci| = 0
2gσσ ′ , |ci| = 1,
gσσ ′ |ci| =

√
2.

(20)

Note that gσσ ′ is the coupling strength of components σ and σ ′.
The number of components is not limited by the Shan–Chenmodel.
Also note that non-zero values of gσσ allow for self-interaction of
component σ . The pseudo-potential forces introduce a density-
gradient-dependent term into the equation of stateswhich ensures
phase separation for a given critical coupling strength and overall
density.Masses are determinedup to a constant allowing the use of
unit mass where convenient. Mass contrasts of components imply
a contrast in dynamic viscosity andwarrant the introduction of the
effective common equilibriumvelocity (12). No differences inmass
have been used so far in our publishedworkwhile, in the lowMach
number limit, the common velocity equals the single component
bulk velocity.

2.3. Amphiphilic fluid components

LB3D supports fluid mixtures of up to three components, one
of which is amphiphilic (oil or red, water or blue and surfactant
or green). Amphiphilic properties of the surfactant component are
modelled by introduction of a dipole field d(x, t) representing the
average molecule orientation at each lattice site [10]. The orien-
tation of the dipole vector d is allowed to vary continuously. It is
advected with the fluid and thus propagates according to

fσ (x, t + h)d(x, t + h) =

∑
i

f ∗

σ ,i(x − hci, t)d∗(x − hci, t), (21)

where d∗ denotes the post-collisional dipole vector which is re-
laxed through a BGK process on a single timescale

d∗(x, t) = d(x, t) −
h
τd

[
d(x, t) − deq(x, t)

]
. (22)

The equilibrium orientation is derived from amean field approach.
The mean dipole field in the surrounding fluid can be written as

b(x, t) = bα(x, t) + bσ (x, t), (23)

where the contribution from ordinary species is

bσ (x, t) =

∑
σ

qσ
∑

i

fσ ,i(x, t)ci. (24)

Here qσ is a colour charge for the ordinary species. The contribution
from the amphiphilic species can be written as

bα(x, t) =

∑
α

⎡⎣∑
i̸=0

fα,i(x + hci, t)Di · d(x + hci, t)

+ fα,i(x, t)d(x, t)

⎤⎦ , (25)

where the traceless second rank tensor Di is given by

Diαβ = δαβ − 3
ciαciβ
c2i

. (26)

The equilibrium dipole configuration can then be derived from a
Boltzmann distribution which gives

deq
= d0

[
coth(βb) −

1
βb

]
b̂, (27)

where b = |b(x, t)| and b̂ = b(x, t)/b.β is the inverse temperature,
and d0 is a parameter representing the intrinsic dipole strength of
the amphiphiles.

With an amphiphilic species present, additional force com-
ponents are introduced between the species. In addition to the
density dependence of the binary model, the resulting forces do
not only depend on the fluid densities alone, but on the dipole
moment (with the relative orientation to boundaries and neigh-
bouring dipoles) as well. The force on oil and water components σ
is now

Fσ (x, t) = Fintσ (x, t) + Fσα(x, t), (28)

where Fintσ is given in Eq. (19), and the additional force due to the
amphiphiles is

Fσα (x, t) = −2gασψα (x, t)
∑
i̸=0

d (x + cih, t)

·Diψ
σ (x + cih, t) . (29)

Similarly, the force on the amphiphilic components is

Fα(x, t) = Fασ (x, t) + Fαα(x, t), (30)

where Fασ is the reaction force to Fσα and has the form

Fασ (x, t) = 2ψσ (x, t) d (x, t)
·

∑
α

gασ
∑
i̸=0

Diψ
α (x + cih, t) . (31)

S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161 153

Finally, the force acting between surfactant components on neigh-
bouring sites is given by

Fαα (x, t) = −
12
c2
ψα (x, t) gαα

∑
i̸=0

ψα (x + cih, t)

·

(
d (x + cih, t) · Did (x, t) ci +

[
d (x + cih, t) d (x, t)

+ d (x, t) d (x + cih, t)
]
· ci

)
. (32)

The parameters gασ , gσα , and gαα in Eqs. (29), (31), and (32) are
the coupling strength between water and oil components σ and
amphiphilic component α, respectively. Details on the derivation
of the force terms can be found in [10,51]. These forces are added
in the algorithm in a manner analogous to the pseudo-potential
force inducing the phase transition in the binarymulti-component
system.

2.4. Boundary conditions

In the present lattice-Boltzmann model, each lattice site con-
tains either fluid components or an obstacle, e.g., a boundary wall.
LB3D v7.1 supports a number of different boundary closures for
the unknown pre-collisional populations on fluid nodes that are
adjacent to one or more boundary nodes. In the following we
describe the simple bounce-back rule and on-site rules forDirichlet
and Neumann boundary conditions that enable inlet and outlet
boundary conditions. Furthermore, we describe wetting boundary
conditions for surfaces that have specific affinities with respect to
different fluid species.

2.4.1. Bounce-back boundary conditions
The bounce-back boundary conditionwas originally introduced

for lattice-gas models and poses a simple way to implement a no-
slip boundary condition located approximately halfway between
a boundary node and an adjacent fluid site [53–55]. Simple mid-
grid boundary conditions achieve zero velocity on a link connecting
fluid and an obstacle by inverting the velocity of the impinging
populations. This reflection can bewritten as amodified streaming
step, cf. Eq. (2),

fσ ,i(x, t) = f ∗

σ ,ī(x, t − h), (33)

where x + hci is a solid site, and the index ī indicates the inverse
velocity of i, i.e., cī = −ci. For the simple bounce-back rule, the ef-
fective location of the no-slip boundary condition is approximately
halfway between fluid and solid. A detailed analysis shows that the
exact location depends on the collision model employed, and for
the LBGK model the location is viscosity dependent [56–58].

2.4.2. On-site velocity boundary conditions
It is often desirable to specify the exact positionwhere Dirichlet

or Neumann boundary conditions are to be satisfied independently
of other simulation parameters. To this end, on-site boundary con-
ditions allow us to specify the velocity or fluxes on the boundary
and lead to a fully local closure relation. This approach was origi-
nally suggested by Zou and He [59] for D2Q9 and D3Q15 models,
and later extended to D3Q19 lattices [60–62].

For on-site Neumann (or pressure) boundary conditions, one
uses Eqs. (7) and (8) to calculate the unknown velocity component
on the boundary from the two known ones and a specified density
ρ0. Similarly, for on-site Dirichlet (or flux) boundary conditions,
one can calculate the density ρ from the two known velocity com-
ponents and the third specified component. In order to determine
the unknown populations, one applies the bounce-back condition

Fig. 2. Overview of the subroutine calls in the program set in standard face LB3D.
Principal algorithm execution is divided into three phases, initialisation, main time
loop and finalisation. Initialisation comprises the py_bridge portion of the code,
which is implemented in C and allows definition of LB3D initialisation parameters
via a Python interface. Colour online.

to the non-equilibrium part of the populations, e.g., for a boundary
normal to the xy-plane,

fσ ,5 − f eq5 = fσ ,6 − f eq6 (34)

which leads to an expression for the unknown population

fσ ,5 = fσ ,6 + f eq5 − f eq6 = fσ ,6 +
2w1a
c2s h

fσuσ ,z + O(u3). (35)

The equation system for the remaining unknown populations is
over-determined, which can be remedied by introducing addi-
tional transverse momentum corrections that reflect the stresses
introduced by the boundary conditions. The equation system for
the remaining populations then reads

fσ ,9 = fσ ,14 +
2w2a
c2s h

nσ
(
uσ ,z + uσ ,x

)
− Nzx

σ , (36)

fσ ,13 = fσ ,10 +
2w2a
c2s h

nσ
(
uσ ,z − uσ ,x

)
+ Nzx

σ , (37)

fσ ,15 = fσ ,18 +
2w2a
c2s h

nσ
(
uσ ,z + uσ ,y

)
− Nzy

σ , (38)

fσ ,17 = fσ ,16 +
2w2a
c2s h

nσ
(
uσ ,z − uσ ,y

)
+ Nzy

σ , (39)

where the transverse momentum corrections are given by

Nzx
σ =

1
2

[
fσ ,1 + fσ ,7 + fσ ,8 − fσ ,2 − fσ ,11 − fσ ,12

]
−

4w2a
c2s h

fσuσ ,x,

(40)

Nzy
σ =

1
2

[
fσ ,3 + fσ ,7 + fσ ,11 − fσ ,4 − fσ ,8 − fσ ,12

]
−

4w2a
c2s h

fσuσ ,y.

(41)

These expressions close the boundary equations. More details and
the generalisation to arbitrary flow directions can be found in [62].

2.4.3. Wetting boundary conditions
Specific surface interactions can be realised by introducing a

pseudo-density ψW at obstacle sites x′, which is used to calculate
a pseudo-potential interaction between the fluid and components
and the surface

Fintσ (x, t) = −ψσ (x, t)
∑
x′∈W

Gσ ,wall(x, x′)ψW . (42)

This strategy was first introduced by Martys and Chen [52]. The
wetting boundary conditions are usually augmented with bounce-
back or on-site boundary conditions.

3. Implementation

The core of the lattice-Boltzmann code LB3D is written in FOR-
TRAN 90/95. In addition, version 7.1 provides conduits written in

154 S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161

Fig. 3. Illustration of the layout of the 5-dimensional column major order FORTRAN array storing lattice information per component. Lattice index i changes fastest, and
component index slowest.

C to facilitate a Python interface that supports scripting during
the initialisation stage. The core code is parallelised using MPI-2
for distributed memory and OpenMP for shared memory. It can
be compiled and run using arbitrary combinations of MPI and
OpenMP threads. LB3D makes use of several external libraries
including Python,MPI, OpenMP,HDF5, andXDR. The testing frame-
work and supplementary tools are written in Python.

The execution flow of LB3D is structured in self-contained ini-
tialisation, simulation, and finalisation stages. The corresponding
subroutine call structure is illustrated in Fig. 2. In the initialisation
stage, the code reads an input file describing the simulation setup
(number of components, initial conditions, simulation time, out-
put options) as well as the physical parameters such as τσ , gσσ ′ ,
etc. The input file can also specify Python scripts to be executed
during initialisation in order to introduce boundary conditions and
to modify the initial fluid state (cf. Section 3.7). The simulation
stage evaluates the lattice-Boltzmann equation until the specified
simulation time is reached. Each time step involves several sub-
steps for the lattice-Boltzmann algorithm, data caching, parallel
communication, and file I/O. After completion of the simulation
stage, the finalisation stage shuts down the MPI environment, de-
allocatesmemory, and polls and prints the execution timers before
the program terminates successfully.

We now outline the essential elements of the implementation
in more detail which serves to provide a development guide for
future extensions.

3.1. Data structures

The core data structure of the implementation is a five-
dimensional array of fluid populations fσ ,i(x, y, z) for the current
time stepwith index order i, x, y, z and σ . The layout is illustrated in
Fig. 3. FORTRAN columnmajor order implies indices varying fastest
from left to right. We evaluated different memory layouts for the
populations array and found this order to be most effective for
the present algorithm implementation. A five-dimensional array
is used to store forces Fσ (x, y, z, t) with index order α, x, y, z, σ (α
denoting the vector component). Information on solid boundary
conditions is stored in a three-dimensional array of obstacle flags
with indices x, y, z. In addition, a four-dimensional array for cached
fluid densities fσ (x, y, z) with indices x, y, z and σ is used.

3.2. System initialisation

System initialisation can be performed either from scratch us-
ing a set of input options or by re-initialisation from checkpoint
files in HDF5 format. The initialisation subroutine first reads any
command line arguments including the path to a set of input files.
The parameter input file is expected in .ini file format and pro-
cessed by themodule fini_parser. It is structured in sections for the
simulation environment, common simulation parameters, physics
parameters and output properties. Settings for special boundary
conditions and checkpoints are given in separate sections. A unique
feature of LB3D is the ability to adjust the system initialisation by
providing a Python script which can modify density values for the
respective fluid components as well as boundary geometries and
wetting interaction parameters. Example input files are given in
Figs. 4 and 5. Detailed explanations of all available input parame-
ters can be found in the LB3D user manual.

During initialisation, theMPI parallel environment is set up,MPI
and HDF5 data structures are instantiated, the random number
generators are seeded, and general variable defaults are set. The
simulation parameters are then set to the values specified in the
input file, where a set of compatibility checks is executed to catch
conflicting options and parametrisations. Subsequently, the lattice
data structures are allocated and initialised with a velocity field
and obstacle site distribution, where the LB3D Python interface
is invoked to execute the specified scripts. Moreover, additional
properties such as specific interaction forces as well as in- and
outflow boundary conditions are initialised. If restoration from a
checkpoint is requested, simulation parameters and lattice data are
read from the specified HDF5 files. Once the lattice data has been
initialised, any derived properties are computed and an initial MPI
communication is performed. The initialisation concludes by writ-
ing data output for time step zero and performing a sanity check,
i.e. validating the numerical stability of the physical properties of
the system.

3.3. Algorithmic subroutines

In order to evaluate the lattice-Boltzmann equation (1), the
following sequence of subroutine calls is implemented.

S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161 155

Fig. 4. Example input file for LB3D v7.1. The file geometry.py is part of the porous
example found in the examples directory. Details of the input parameters as well as
a complete list of options is provided in the user manual. This setup is used for the
evaluation of permeability in Section 4.1.2.

1. Streaming step: Propagate populations according to Eq. (2)
and apply bounce-back boundary conditions;

2. Compute the pre-collisional conserved density ρσ via Eq. (7)
and momenta pσ via Eq. (8) for use in influx boundaries,
collision calculation and output routines;

3. Calculations for influx and outflux boundary conditions;
4. Compute external and intermolecular (Shan–Chen) forces

used in collision calculation and output routines;
5. Collision step: Evaluate Eq. (1).

The execution of these steps is performed in themain time loop
subroutine of LB3D as illustrated in Fig. 6. The computation steps
are interspersed with communication steps as required by the
parallelisation, cf. Fig. 7. In addition, optional steps can be executed
for input/output, checkpointing, and sanity checks. In contrast to
other lattice Boltzmann implementations, the algorithm starts by
performing communication followed by an advection step. Subse-
quently, calculation and caching of data is required by boundary
conditions and interaction forces and is performed before the
collision step.

In the current implementation the algorithmperforms between
5 and 6 complete spatial loops — one for each advection and colli-
sion process, one for the calculation of pseudo-potential forces and
twomore to pre-calculate and cache momentum and forces. A last
optional loop is required for the calculation of dipolar interactions
in the ternary model. Dividing the algorithm in this fashion pro-
vides a clear structure for the integration of future features. Here
the focus is not on optimal performance but rather on readability
and extensibility.

3.4. Parallelisation

Simulations are run on a three-dimensional rectangular lattice
of size tnx × tny × tnz with periodic boundary conditions as
default. In order to run parallel jobs, the lattice slab is divided on
program start-up into blocks of equal size nx × ny × nz. The exact
lattice subdivision may be either specified by the user or chosen
automatically by the MPI implementation. The number of lattice
sites along each axis must be divisible by the number of processes
used along that axis.

The spatial dimensions nx, ny, nz of all arrays on each CPU
are extended by a halo region which contains copies of lattice
blocks from neighbouring CPUs. The algorithms implemented in
the current code require a halo depth of one lattice site, but it can
be set to any value for more complicated algorithms. MPI-2 array
data types are instantiated for the halo regions such that a single
pair of MPI send and receive calls can be used for communication
between MPI processes.

Shared memory parallelisation using OpenMP is enabled by
wrapping the various spatial loops responsible for the calculation
of the respective algorithm steps. Advection is performed using
a single lattice buffering adjacent lattice site information for one
z-layer at the time. Creation of the buffer is multi-threaded sepa-
rately from the subsequent advection calculation.

3.5. Data output

LB3Dwrites physical properties of fluids to output files at spec-
ified time intervals. The writeable properties include the densities
of components and the flow velocity, and the frequency at which
data is written can be specified in the input file. Generally, no
outputs arewritten until time stepn_sci_start, afterwhich data
is written every n_sci_OUTPUT time steps, where OUTPUT stands
for a specific property. A value of n_sci_OUTPUT = 0 disables
the output of the respective property. The output file format is
the Hierarchical Data Format (HDF) [63] which facilitates portable,
platform–independent data. HDF provides the possibility to add
meta data to the raw data files and LB3D makes use of this feature
by adding specific information on parameters as detailed in the
manual [64].

LB3D can be instructed to produce checkpoint files at specified
time intervals. These files can be used to restart the simulation
from a given configuration.When the simulation is being restarted
from a checkpoint, it is possible to override any of the simula-
tion parameters and even re-apply initialisation scripts. Therefore
checkpointsmaybeused to create non-trivial initial conditions and
ad hoc steering of simulations. Both output and checkpoint files are
written in HDF5 [65].

3.6. Installation

LB3D version 7.1 supports most Linux environments including
Gnu, Cray or Intel compatible compilers.

• MPI ≥ 2.0,
• HDF5 ≥ 1.8.0 (compiled against MPI with –enable-parallel

–enable-fortran),

156 S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161

Fig. 5. Example use of the Python bindings for generation of a system setup. The file geometry.py is part of the porous example found in the examples directory. The
functions rock_set and fluid_clearmanipulate the obstacle and density field of the system directly in the LB3D domain. The function lb3d.geom_ellipsoid executes
respective calls in an ellipsoid volumewith centre {x, y, z} and axes {a, b, c}. Algorithm development around atomic get and set functions canmake use of the regular Python
environment.

• Python ≥ 2.6,
• Jinja2.

Configuration of the package should include explicit specification
of the HDF5 compiler wrapper h5pcc as well as the LB3D Python
bindings via the options
$./configure --with-hdf5=/PATH/TO/h5pcc\

--with-lb3d-py-path =/PATH/TO/lb3d/py
$ make

By default LB3D builds the binary lb3d in the /lb3d/src
directory. Evoking make install by default installs to
/usr/local/lb3d. If configure is provided with an install prefix,
the binary is copied to /PREFIX/bin/lb3d and Python bindings
to /PREFIX/share/lb3d/py. More details on the installation
process can be found in the user manual [64].

3.7. Workflow

In order to illustrate the typical workflow of a LB3D simu-
lation, we use the porous media example, the results of which
are presented in Section 4. The input file is listed in Fig. 4 and
the Python script generating the geometry is listed in Fig. 5. The
input file specifies simulation parameters like the number of fluid
species, system size, and number of time steps to simulate. Further
initial parameters can be included through Python bindings. The
Python script contains functions to set and unset obstacle and fluid
parameters on individual lattice sites or specific geometries. It is
also possible to load information from an XDR file which defines
applicable boundary conditions for each lattice site (details can be
found in the user manual [64]).

S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161 157

Fig. 6. Algorithm execution in the main time loop of LB3D. As the initialisation step includes a first collision calculation to enforce well-formed initial distributions, the
time-loop starts with a communication step and executes advection first. To avoid re-calculation of frequently used properties locally conserved density and momentum as
well as interaction forces are cached. Symmetry in the interaction forces permits halving of the computed force components. Every time step or interval can be configured
to include checks of system stability and validity, termed sanity checks, as well as scientific and checkpoint output.

Fig. 7. Illustration of the subarray structure and communication pattern in one dimension for a halo extent of 2. The simulation domain extends from coordinate index 1
to nx. The boundary layers of the domain are replicated as halo layers on the neighbouring processes where data is exchanged through MPI communication. Sending and
receiving of data is facilitated by MPI subarray types for the halo extent. Periodic boundary conditions are implied by the MPI neighbourhood. Colour online.

All file paths are specified relative to the current execution
directory. The actual simulation is started by invoking

mpirun -n NUMBER_OF_CORES ./lb3d -f input.in

where the mpirun command is dependent on the specific system
configuration and MPI library. By default LB3D writes output to
the directory ./output/ relative to the execution directory. Data
analysis can be performed using a range of available HDF5 tools
for different languages including Python, C/C++, and FORTRAN. For
example, the package h5utils provides a number of converters, i.a.,
to ASCII and VTK formats for visualisation. More details on the
available configuration and evaluation options can be found in the
user manual [64].

4. Case studies

The development of LB3D version 7.1 involved substantial
refactoring of an earlier version of the code. Besides integrating

new features and cleaning up the input/output routines, the par-
allelisation structure was extended tomake use of sharedmemory
strategies within nodes that comprise more and more cores. In
this section we report the results of physics validation as well as
performance benchmarks. This is done to confirm the accuracy of
the added and altered functionality and probe the parametrisation
of the hybrid parallel approach on the current UK National Super-
computer ARCHER.

4.1. Validation

To ensure that the re-factoring has preserved all model proper-
ties, exemplary mesophase simulations originally performed with
prior versions of LB3D have been reproduced. Due to the determin-
istic nature of the lattice Boltzmann method and the absence of
random initial and boundary conditions the obtained results repro-
duce values calculated by earlier versions exactly. Herewedescribe
simulation parametrisation and results for three test cases. For the

158 S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161

spinodal decomposition of an amphiphilic mixture we report the
time behaviour of the average fluid domain size as a function of
time and evaluate the power law observed. In a second test case
we make use of the Python bindings and measure permeability
in a model porous medium. Finally we investigate the qualitative
formation of amphiphilic mesophases.

4.1.1. Spinodal decomposition of an amphiphilic mixture
Spinodal decomposition is the process of rapid demixing of

immiscible fluids, e.g. water and oil. The phase separation is gov-
erned by surface tension effects and characteristically exhibits an
exponential increase in domain volumes of the demixing com-
ponents [16,66]. The addition of an amphiphilic component re-
duces the surface tension between the components and slows the
spinodal decomposition process down. The resulting process still
behaves exponentially, but the exponent of the observed dynamics
of the domain sizes is reduced [20,67–69].

In order to evaluate the dynamics of the ternary model im-
plemented in LB3D, we validate simulation results published by
some of us previously [20,69]. Keeping the overall fluid density
constant at ρtot = 0.8m/a3 overall, the density of the amphiphilic
component is increased in steps of ∆ρα = 0.05m/a3 from ρα =

0.0m/a3 toρα = 0.30m/a3. Simulations are performedon a lattice
of 256 × 256 × 256 sites. The coupling between immiscible com-
ponents is gbr = 0.08m/(ah2), between immiscible components
and surfactant is gbs = −0.06m/(ah)2 and between surfactant
components gss = −0.03m/(ah)2.

Fig. 8 shows the dependence on time of the average lateral
domain size for varying amphiphilic concentration. The exponent
of the decomposition dynamics is determined by fitting an expo-
nential to the relevant portion of the curves (portions linear in
the log–log view). Initial non-exponential behaviour is due to the
homogeneous initialisation of the fluids and discretisation on the
lattice, respectively. The right part of the figure shows the resulting
time exponents as a function of amphiphilic concentration. The im-
pact of added surfactant becomes more pronounced approaching
the critical micelle concentration at approximately 22%.

4.1.2. Permeability in a model porous medium
Another area of application of LB3D is the modelling of the flow

of fluid mixtures over solid surfaces and in porous media. A phe-
nomenological property to classify porous media is the permeabil-
ity κ which quantifies the relation of a pressure gradient applied
on amedium and the resulting flow through it. For a regular lattice
of spheres the permeability is accessible semi-analytically [70,71]
and has been found to follow

κ =
R2

6πχζ
, (43)

where R is the sphere radius, χ is the ratio between radius and
separation, assumed to equal one in our case as spheres created
by the initialisation algorithm do touch (see Fig. 9). Finally, ζ is
a dimensionless drag coefficient which can be approximated by
a series expansion in χ . With an approximate value of χ · ζ ≈

160.0 the theoretical permeability in lattice units for our system
is κ ≈ 0.075. Using the input file shown in Fig. 4, a system
of 64 × 64 × 64 lattice sites is initialised with the default red
and blue concentrations ρr = ρb = 1.0m/a3. The coupling
gbr = 0.01m/(ah)2 keeps the liquids miscible. A gravity force of
10−5 m/(ah)2 equivalent to a homogeneous pressure gradient is
applied in the z-direction. In order to measure the permeability,
we evaluate the average velocity ⟨u⟩ and density ⟨ρ⟩ as well as the
mean pressure gradient ⟨∇P⟩, and calculate

κ = −ρν
⟨u⟩

⟨∇P⟩
. (44)

Fig. 8. Log–log plot of the dynamics of the average lateral domain size as a function
of amphiphilic fluid concentration. Exponents of the fitted curves are plotted as
function of the amphiphilic fluid concentration on the right. When exceeding a
concentration of approximately 35%, the critical micelle concentration, spinodal
decomposition is arrested. The impact of added surfactant concentration increases
significantly towards the critical concentration.

Fig. 9. Volume rendering of the model porous geometry as generated by the
geometry.py file listed in Section 3. The geometry is used here in the simulations
for permeabilitymeasurements. Spheres of a radius of 15 lattice sites are positioned
on a body centred cubic lattice. The system shown has 64 × 64 × 64 lattice sites.

S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161 159

Fig. 10. Relative error of permeability measured in the simulation domain as
compared to the theoretical results. For LBGK models fixed relaxation parameters
exist that minimise the error. Other ways to decrease deviation include simulate at
higher resolutions and use more accurate collision models such as multi-relaxation
time collision schemes.

Table 1
Simulation parameters for the self-assembly of representative primitive, hexago-
nal, diamond and gyroid mesophases used in the validation simulations. The char-
acter of the phase is determined by the densities ρr,b of two partially miscible or
immiscible fluid components and the density ρs of the amphiphilic component
as well as the parameters defining the coupling strength between the immiscible
components, gbr , the (im)miscible and amphiphilic components gbs and the am-
phiphilic self-interaction gss . See text for further details.

Mesophase ρr ρb ρs gbr gbs gss
Primitive 0.3 0.3 0.9 0.01 −0.006 −0.0005
Hexagonal 0.3 0.3 0.9 0.01 −0.006 −0.001
Diamond 0.05 0.05 0.7 0.01 −0.006 0.00035
Gyroid 0.7 0.7 0.9 0.08 −0.006 −0.003

Fig. 10 shows the error of permeability measurements as a
function of the simulated fluid viscosity. The deviation is a well
known artefact of LBGKmodels when combinedwith bounce-back
boundary conditions. The effect can be reduced by increasing the
resolution as it is directly proportional to the surface to volume
ratio of the simulation. Another way to correct the error is the in-
tegration of a multi-relaxation time collision scheme within LB3D,
as is planned in the future.

4.1.3. Formation of amphiphilic mesophases
The ternary fluid model implemented in LB3D can be ap-

plied to investigate the self-assembly of amphiphilic mesophases
[20–22,30–34]. Table 1 gives an overview of the parametrisation
for simulations of self-assembly of mesophases using LB3D v7.1.
Simulations were performed on a lattice of 256 × 256 × 256
sites. Simulation domains are initialised with fluid of homoge-
neous densities of ρr,b for the two components and a density ρs
for the amphiphilic component respectively. The subsequent self-
assembly of the mesophases is driven by the coupling forces, cf.
Eq. (15).

In pressure jump experiments the density of the fluid compo-
nents is increased, which is equivalent to an increase in overall
systempressure.Weobserve the formation of primitive andhexag-
onal mesophases, respectively, for a reduction in the surfactant
self-interaction strength. In our simulations the parameter was
changed from gss = −0.0005m/(ah)2 to gss = −0.001m/(ah)2.
Systems at lower and higher pressure exhibit cubic diamond and
gyroidmesophases, respectively. Fig. 11 shows a volume rendering
of the observed morphologies. The images display the zero isosur-
face of the order parameter defining the boundary of immiscible
components (cf. [31] for more details).

4.2. Performance

During the refactoring of LB3D, we have focused on creating
more clearly structured and well documented code. Moreover,
the new implementation exhibits a significantly improved single
core performance. While OpenMP shared memory parallelisation
has been implemented in addition to the prior MPI parallelisa-
tion, we focus here on the single core performance and scaling
of the MPI based parallelisation. Tests of a hybrid parallelisation
approach, naïvely introducing OpenMPwrappers around the main
loops, result in loss of performance in all cases. More sophisti-
cated strategies introducing nested loops and explicit OpenMP
parametrisation allow for performance gains of the order of 10
percent compared to simple MPI. We have, however, found the
successful parametrisations to not only vary with themachine, but
to depend on the chosen problem as well. While this may change
for explicit shared memory machines and future heterogeneous
exa-scale configurations, in the current publication the systematic
investigation of hybrid parallel performance has been omitted.

Table 2 compares the single core performance of LB3D v7.1
against LB3D v7.0 as measured for simulations of domains of
256 × 256 × 256 lattice sites on 22 nodes of ARCHER comprised
of two 12-core CPUs each. The speedup observed between the
versions measured in millions of lattice site updates per second
(MSUPs) per core is approximately three-fold. Acceleration of com-
putation has been achieved by optimising communication, mem-
ory structure and algorithms throughout the code. Most promi-
nently, component information has been separated in memory.
Pre-calculation and caching steps have reduced redundant calcu-
lations. The change in memory layout has furthermore facilitated
optimised MPI array definitions and communication patterns.

Fig. 12 illustrates the strong scaling behaviour for geometries of
size 1024× 1024× 1536 lattice sites and calculations considering
single phase flow, binary mixtures or amphiphilic fluid mixtures.
Simulating a system of pure fluid (mixture) for 10,000 time steps
on 256, 512, 1024 and 2048 nodes of ARCHER,we observe excellent
strong scaling behaviour close to ideal speedup. This is especially
true for the more computationally demanding multi-component
cases. CPU counts aremultiples of 24 corresponding to the ARCHER
node size. The scaling remains close to linear formany tens of thou-
sands of cores and for the selected system domain size only just
starts to deteriorate on 49,152 cores. The single core performance
is comparable to the values given in Table 2.

Table 2
Comparison of performance between LB3D version 7.0 and the new LB3D version 7.1. The performance measured in millions of lattice site updates per second (MSUPs)
per core shows significant improvement.

Application # of lattice sites Discretisation Architecture # of cores MSUPs/core

LB3D v7.0 1-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.369
LB3D v7.0 2-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.203
LB3D v7.0 3-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.098
new LB3D v7.1 1-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 1.360
new LB3D v7.1 2-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.648
new LB3D v7.1 3-phase 16,777,216 D3Q19 Intel Xeon E5-2697 v2 (ARCHER) 512 0.277

160 S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161

Fig. 11. Volume rendering of simulation snapshots of zero order parameter iso surfaces for the respective mesophases obtained in simulation. Simulations were run in a
volume of 323 lattice sites for 30,000 time steps. The order parameter is given by the difference of local densities of immiscible components. The density and interaction
parameters control the pressure in the model (see [31]).

Fig. 12. Strong scaling behaviour of single component, binary immiscible and
ternary amphiphilic fluid mixtures in simulations domains of 1024 × 1024 × 1536
lattice sites. Data was obtained from runs of 10,000 time steps performed on
ARCHER. The scaling remains close to linear for many tens of thousands of cores
and only just starts to deteriorate on 49,152 cores. The single core performance is
here comparable to the values given in Table 2.

5. Summary

The LB3D simulation code has enabled a substantial amount
of scientific research in diverse contexts. Starting from the inves-
tigation of ternary amphiphilic fluid mixtures the code has been
extended to include a variety of boundary effects and coupled
models. Cleaning and refactoring of the code have led to improved
readability and extensibility. To ensure scientific accuracy and
model applicability of the refactored version, we have reproduced
earlier findings of ternary amphiphilic mixtures on the current
UK National Supercomputer. While maintaining flexibility and ex-
tensibility, the single-core performance has more than doubled.
Exploiting the excellent parallelisation behaviour of the lattice-
Boltzmann algorithm, the strong scaling behaviour of the code
remains close to linear. With LB3D version 7.1, we release an
open source version of the code that provides functionality for
simulation of amphiphilic mixtures in complex geometries. The
documentation andnewPython scripting options enhance the ease
of use of existing features, while at the same time facilitating con-
tinued development and extension. By releasing this code under a
BSD 3-clause license, we hope to inspire independent developers
to contribute new features to LB3D.

Acknowledgements

Support from Fujitsu Laboratories Europe, from the UK Consor-
tium on Mesoscale Engineering Sciences (UKCOMES) under EPSRC

Grant No. EP/L00030X/1 and the EU H2020 ComPat project No.
223979 is acknowledged. Our work also made use of the ARCHER
UK National Supercomputing Service (http://www.archer.ac.uk).

References

[1] J. Desplat, I. Pagonabarraga, P. Bladon, Comput. Phys. Comm. 134 (2001) 273.
[2] M.D. Mazzeo, P.V. Coveney, Comput. Phys. Comm. 178 (2008) 894–914.
[3] OpenLB - Open Source Lattice Boltzmann Code (http://www.optilb.org).
[4] Palabos - CFD Complex Physics (http://www.palabos.org).
[5] Exa Simulation Software Solutions | Exa Corporation (http://exa.com).
[6] XFlow is a next generation CFD software system fromNext Limit Technologies

that uses a proprietary, particle-based, meshless approach which can easily
handle traditionally complex problems (http://www.xflowcfd.com).

[7] B.M. Boghosian, P.V. Coveney, P.J. Love, Proc. R. Soc. A 456 (2000) 1431.
[8] P.J. Love, J.B. Maillet, P.V. Coveney, Phys. Rev. E 64 (2001) 061302.
[9] J. Chin, P.V. Coveney, Phys. Rev. E 66 (2002) 016303.

[10] H. Chen, B. Boghosian, P. Coveney, M. Nekovee, Proc. R. Soc. A 456 (2000) 2043.
[11] J. Chin, J. Harting, S. Jha, P.V. Coveney, A.R. Porter, S.M. Pickles, Contemp. Phys.

44 (2003) 417–434.
[12] J. Chin, P.V. Coveney, J. Harting, Proceedings of the UK E-Science All Hands

Meeting, 2004.
[13] S.M. Pickles, R.J. Blake, B.M. Boghosian, J.M. Brooke, J. Chin, P.E.L. Clarke, P.V.

Coveney, N. González-Segredo, R. Haines, J. Harting, M. Harvey, S. Jha, M.A.S.
Jones, M. McKeown, R.K. Pinning, A.R. Porter, K. Roy, M. Riding, Proceedings of
the Workshop on Case Studies on Grid Applications at GGF 10.

[14] R.J. Blake, P.V. Coveney, P. Clarke, S.M. Pickles, Sci. Program. 13 (2005) 1–17.
[15] J. Harting, J. Chin, M. Venturoli, P.V. Coveney, Phil. Trans. R. Soc. A 363 (2005)

1895.
[16] N. González-Segredo, M. Nekovee, P.V. Coveney, Phys. Rev. E 7 (2003) 046304.
[17] N.J. González Segredo, P.V. Coveney, Lattice-Boltzmann and lattice-gas simu-

lations of binary immiscible and ternary amphiphilic fluids in two and three
dimensions.

[18] J. Harting, G. Giupponi, P.V. Coveney, Phys. Rev. E 75 (2007) 041504.
[19] J. Harting, G. Giupponi, High Performance Computing in Science and Engineer-

ing, vol. 07, 2008, p. 457.
[20] N. González-Segredo, P.V. Coveney, Phys. Rev. E 6 (2004) 9.
[21] N. González-Segredo, P.V. Coveney, Europhys. Lett. 6 (2004) 5.
[22] N. Gonzalez-Segredo, P.V. Coveney, Phys. Rev. E 69 (2004) 060701.
[23] J. Harting, M. Venturoli, P.V. Coveney, Phil. Trans. R. Soc. A 362 (2004) 1703–

1722.
[24] R.S. Saksena, B. Boghosian, L. Fazendeiro, O.A. Kenway, S. Manos, M.D. Mazzeo,

S.K. Sadiq, J.L. Suter, D. Wright, P.V. Coveney, Phil. Trans. R. Soc. A 367 (2009)
2557–2571.

[25] D. Groen, O. Henrich, F. Janoschek, P.V. Coveney, J. Harting, Lattice-Boltzmann
Methods in Fluid Dynamics: Turbulence and Complex Colloidal Fluids, W.F.
Bernd Mohr (Ed.), Jülich Blue Gene/P Extreme Scaling Workshop 2011, Jülich
Supercomputing Centre, 52425 Jülich, Germany, 2011, fZJ-JSC-IB-2011-02.

[26] J. Harting, M.J. Harvey, J. Chin, P.V. Coveney, Comput. Phys. Comm. 165 (2005)
97–109.

[27] J. Chin, P.V. Coveney, Phil. Trans. R. Soc. A 462 (2006) 3575–3600.
[28] G. Giupponi, P.V. Coveney, Math. Comput. Simulation 72 (2006) 124–127.
[29] N. González-Segredo, J. Harting, G. Giupponi, P.V. Coveney, Phys. Rev. E 73

(2006) 031503.
[30] R.S. Saksena, P.V. Coveney, Parallel Lattice-Boltzmann Simulations for the

Investigation of Cubic Phase Rheology at the Petascale. Proceedings of the
Teragrid conference 2008 (2008) 92.

[31] R.S. Saksena, P.V. Coveney, J. Phys. Chem. B 112 (2008) 2950–2957.
[32] R.S. Saksena, P.V. Coveney, Proc. R. Soc. A 465 (2009) 1977–2002.
[33] R.S. Saksena, P.V. Coveney, Soft Matter 5 (2009) 4446–4463.

http://www.archer.ac.uk
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb1
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb2
http://www.optilb.org
http://www.palabos.org
http://exa.com
http://www.xflowcfd.com
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb7
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb8
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb9
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb10
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb11
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb11
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb11
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb12
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb12
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb12
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb14
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb15
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb15
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb15
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb16
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb18
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb19
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb19
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb19
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb20
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb21
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb22
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb23
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb23
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb23
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb24
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb24
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb24
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb24
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb24
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb26
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb26
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb26
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb27
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb28
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb29
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb29
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb29
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb31
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb32
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb33

S. Schmieschek et al. / Computer Physics Communications 217 (2017) 149–161 161

[34] P.V. Coveney, R.S. Saksena, Abstracts of Papers of the American Chemical
Society 239 (2010) 473.

[35] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond,
Oxford University Press, 2001.

[36] B. Dünweg, A. Ladd, Adv. Poly. Sci. 221 (2009) 89–166.
[37] C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid Mech. 42 (2010) 439–472.
[38] X. He, L.-S. Luo, Phys. Rev. E 55 (1997) R6333–R6336.
[39] X. He, L.-S. Luo, Phys. Rev. E 56 (1997) 6811.
[40] X. He, X. Shan, G.D. Doolen, Phys. Rev. E 57 (1998) R13–R16.
[41] A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104 (2001) 1197–1251.
[42] Y.H. Qian, D. D’Humières, P. Lallemand, Europhys. Lett. 17 (1992) 479.
[43] X. Shan, X. He, Phys. Rev. Lett. 80 (1998) 65–68.
[44] X. Shan, X.-F. Yuan, H. Chen, J. Fluid Mech. 550 (2006) 413–441.
[45] P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94 (1954) 511–525.
[46] D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann

Models, Springer, 2000.
[47] Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65 (2002) 046308.
[48] A. Chekhlov, V. Yakhot, Phys. Rev. E 51 (1995) R2739–R2742.
[49] X. Shan, G. Doolen, J. Stat. Phys 81 (1995) 379.
[50] X. Shan, H. Chen, Phys. Rev. E 47 (1993) 1815–1819.
[51] M. Nekovee, P.V. Coveney, H. Chen, B.M. Boghosian, Phys. Rev. E 62 (2000)

8282–8294.
[52] N.S. Martys, H. Chen, Phys. Rev. E 53 (1996) 743.
[53] R. Cornubert, D. d’Humières, D. Levermore, Physica D 47 (1991) 241–259.
[54] P. Lavallée, J.P. Boon, A. Noullez, Physica D 47 (1991) 233–240.

[55] D.P. Ziegler, J. Stat. Phys. 71 (1993) 1171–1177.
[56] X. He, Q. Zou, L.-S. Luo, M. Dembo, J. Stat. Phys. 87 (1997) 115–136.
[57] I. Ginzburg, D. D’Humières, Phys. Rev. E 68 (2003) 066614.
[58] B. Chun, A.J.C. Ladd, Phys. Rev. E 75 (2007) 066705–066712.
[59] Q. Zou, X. He, Phys. Fluids 9 (1997) 1591–1598.
[60] M.E. Kutay, A.H. Aydilek, E. Masad, Comput. Geotech. 33 (2006) 381–395.
[61] K. Mattila, J. Hyväluoma, T. Rossi, J. Stat. Mech. Theory Exp. 2009 (2009)

P06015.
[62] M. Hecht, J. Harting, J. Stat. Mech. Theory Exp. 13 (2010) 1.
[63] The HDF Group, Hierarchical data format version 5 (2000-2010).
[64] E. Breitmoser, J. Chin, C. Dan, F. Dörfler, S. Frijters, G. Giupponi, N. González-

Segredo, F. Günther, J. Harting, M. Harvey, M. Hecht, S. Jha, F. Janoschek, F.
Jansen, C. Kunert, M. Lujan, I. Murray, A. Narváez, M. Nekovee, A. Porter, F.
Raischel, R. Saksena, S. Schmieschek, D. Sinz,M. Venturoli, T. Zauner, LB3Duser
manual, UCL (http://ccs.chem.ucl.ac.uk/lb3d).

[65] M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, AD’11, ACM, New York, NY,
USA, 2011, pp. 36–47.

[66] J.W. Cahn, Acta Metall. 9 (1961) 795–801.
[67] J.W. Cahn, Acta Metall. 10 (1962) 179–183.
[68] P.G.d. Gennes, J. Chem. Phys. 72 (1980) 4756–4763.
[69] S. Schmieschek, A. Narváez, J. Harting, in: High Performance Computing in

Science and Engineering, vol. 12, Springer, Berlin, Heidelberg, 2013, pp. 39–49.
[70] H. Hasimoto, J. Fluid Mech. 5 (1959) 317–328.
[71] A. Sangani, A. Acrivos, Int. J. Multiph. Flow 8 (1982) 343–360.

http://refhub.elsevier.com/S0010-4655(17)30101-7/sb35
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb35
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb35
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb36
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb37
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb38
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb39
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb40
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb41
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb42
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb43
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb44
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb45
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb46
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb46
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb46
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb47
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb48
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb49
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb50
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb51
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb51
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb51
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb52
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb53
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb54
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb55
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb56
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb57
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb58
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb59
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb60
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb61
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb61
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb61
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb62
http://ccs.chem.ucl.ac.uk/lb3d
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb65
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb65
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb65
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb65
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb65
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb66
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb67
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb68
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb69
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb69
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb69
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb70
http://refhub.elsevier.com/S0010-4655(17)30101-7/sb71

	LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids
	Introduction
	Method
	Single phase lattice-Boltzmann
	Shan–Chen multiphase model
	Amphiphilic fluid components
	Boundary conditions
	Bounce-back boundary conditions
	On-site velocity boundary conditions
	Wetting boundary conditions

	Implementation
	Data structures
	System initialisation
	Algorithmic subroutines
	Parallelisation
	Data output
	Installation
	Workflow

	Case studies
	Validation
	Spinodal decomposition of an amphiphilic mixture
	Permeability in a model porous medium
	Formation of amphiphilic mesophases

	Performance

	Summary
	Acknowledgements
	References

